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Many papers on the problems of MHD flow around bodies in external magnetic fields are 
surveyed in [i, 2]. A similar investigation for bodies with internal sources of electro- 
magnetic fields is of interest. The electric and magnetic fields in the fluid are produced 
only in the neighborhood of the body around which the flow occurs~ and what is particularly 
important, there is the possibility of controlling the magnitude and spatial distribution 
of body forces. Such internal sources may act as a motor, setting a solid body into trans- 
lational motion relative to the fluid. In this case the effect of electromagnetic body 
forces (EBF) on the flow pattern and the magnitude of the hydrodynamic drag is particularly 
interesting. 

The problem can be studied completely only by combined theoretical and experimental 
research; pure theoretical calculations using numerical methods at the present time are 
limited to small values of the Reynolds number Re. Calculations [3] showed that the hydro- 
dynamic drag of a plate set in motion in its own plane by EBF is higher than the classical 
value. This increase is due to the acceleration of the fluid in the neighborhood of the 
plate, and in the example considered (Re ~-- 230) is nearly 80%. In the case of body forces, 
the effect of electromagnetic forces on the drag coefficient is less than predicted. In 
this case the EBF not only accelerate the fluid in the neighborhood of the body, and thus 
increase the frictional drag, but in addition can increase the pressure in the wake and 
lower the pressure drag. Which of these two processes predominates depends on the nature 
of the variation of the drag coefficient under the action of EBF. 

The present article is devoted to a numerical study of the flow around a sphere with 
internal sources of electromagnetic fields. 

i. Suppose a viscous incompressible conducting fluid flows past a sphere of radius a; 
uo is the flow velocity at infinity; o, p, and v are respectively the conductivity, density, 
and kinematic viscosity of the fluid, Inside the sphere there is an electromagnetic field 
source which produces a traveling magnetic field in the surrounding fluid. Let the e com- 
ponent of the field H on the outer boundary of the sphere in the spherical coordinate sys- 
tem (r, e, ~) be given in the form 

Ho(~,O,t)--  Itoh,(O)e-~(~-~) , 0~0~-~, (1.1) 

where r is the dimensionless radius obtained by using a as the unit of length, e is the angle 
measured from the direction opposite u0, and Ho is the maximum value of the field Hs; the 
function h,(e) characterizes the distribution of the amplitude of the traveling wave over 
the surface of the sphere; lh,(~)Imax = I; m is the frequency; k is the analog of the wave 
number, determining the number of half-waves between 8 = 0 and 0 = ~ on the surface of the 
sphere; the ratio m/k determines the phase angular velocity of the traveling wave. St is 
clear from (I.!) that the E and H fields do not depend on the ~ coordinate, and therefore 
an axisymmetric flow pattern is considered. 

Internal currents in the sphere produce a traveling magnetic field, and the currents 
in the fluid exert a force on the sphere opposite u0 This force can cause the sphere to 
move, and therefore if Ho is large enough the sphere is self-propelled. The problem is to 
determine the electric and magnetic fields E and H in the fluid, and to investigate the 
effect of EBF on the flow pattern and the magnitude of the drag coefficient for various 
values of Ho. 

2. The electromagnetic fields in a fluid are generally determined together with the 
solution of the hydrodynamics equations. We consider the simple situation when the second 
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term in Ohm's law .j: alE ! (lJc)V x HI can be neglected in comparison with the first, and 
thus Maxwell's equations are separated from the hydrodynamics equations. This is valid if 
the phase velocity of the traveling wave* is appreciably higher than the velocity of the 
fluid relative to the sphere, i.e., 

o)a/k>>uo. (2.1) 

I t  s h o u l d  be  n o t e d  t h a t  u n d e r  c o n d i t i o n  ( 2 . 1 )  t h e  e l e c t r o m a g n e t i c  s y s t e m  c o n s i d e r e d  i s  
energetically inefficient -- the Joule losses far exceeding the useful mechanical work done 
by the electromagnetic body forces. However, in investigating the changes of hydrodynamic 
drag as a result of internal sources, this fact is not controlling. 

The fields in the fluid are determined by the vector potential A(r, O, t) : H o a A ( r  , 
0)e mte=, where the dimensionless function A(r, 8) satisfies the equation 

[ (sinO 7 I 0 2 = 1 0 - I 0 A ) [ - -  2 i  
7 ~r 2(rA) , 7 o g  ~ a 7  " t-~ A : - O  ( 2 . 2 )  

[ (5  = c ( a  2~4~-~m) -1  i s  t h e  d i m e n s i o n l e s s  t h i c k n e s s  o f  t h e  s k i n  l a y e r ]  and t h e  b o u n d a r y  c o n d i -  
t i o n s  

~ = - - h , ( 0 ) e  -~J'o, A b : ~  ~ 0. (2 .3 )  

Expanding the boundary function in terms of associated Legendre functions P~(cos @) = 

--sin 0(d/d cos 0)Pl(cos 0), i.e., 

oo 1 

21 + i J h ,  (0) e-~"~P~ (cos0) d cos 0, h,(0)e-~"o =- ~ & P I ( c o s 0 ) ,  dz-- 2z(z-~-a) 
l~ ' l  --1 

we obtain the solution of problem (2.2), (2.3) 

~=I I H(2) tsr~ Pl(cosO), bl A (r, 0) = bz ~ r  z+~ ~ ' :-- 
dz (2.4) 

lH (~) (s)--st t  (2) (s)' 
Z+A z-A 

2 2 

where s = (I -- i)/5, and the H + i/2 are Hankel functions of the second kind of half-inte- 

gral order. 

To calculate the total electromagnetic thrust on the sphere it is necessary to know 
the current distribution in the source producing the field (i.i), and the magnetic field 
produced over all space by the currents j in the fluid. Suppose the traveling magnetic field 
is produced by surface currents distributed over the sphere r = i with an a component 

ic~(O, t) == C[[o~ , (0) e-~'(1~e-(ot). ( 2 . 5 )  

To determine the relation between the functions i,(0) and h,(O) we consider the fields E 
and H inside the sphere. The sphere is assumed nonconducting and nonmagnetic, and there- 
fore the vector potential inside the sphere is described by the equation obtained from (2.2) 
by discarding the last term on the left-hand side. The solution of this equation which has 
no singularity at r = 0 has the form 

0o 

A1 (r, 0 ) --\7 ult'(1)"z~l- rz (cos O). ( 2 . 6 )  
l==1 

From t h e  b o u n d a r y  c o n d i t i o n s  

orO (rA) r = l  : 4 ~ i .  (0 )  e -ihO A ( I , 0 ) = A  x(l,O), O ( r A ~ )  

we obtain 

b~t) ~ t,(2) = < % + •  (s); 
2 

*This can be said of a traveling wave when k is at least not less than unity~ In the 
following hydrodynamics calculations it is assumed that k = 4. 
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Thus, the electric and magnetic fields in the fluid and inside the sphere are described by 
solutions (2.4) and (2.6), respectively (quantities referring to the space inside the sphere 
from now on are denoted by the subscript i), and the distribution of surface current is 
given by Eqs. (2.5) and (2.7). The magnetic field produced by the currents in the fluid is 
determined by the differences A(r, 8) -- A~ 0) and A~(r, 0) -- A~(r, O), where A~(r, 0) = 

c~r~p~(cosO), AO(r,O) := ~ ezr-(~+~)P~(cosO) describe the fields produced by the current (2.4) in 
~=I Z=I 

empty space, where 

bz [ !)H (~-) (s)_-r~(2) ] c~ = 2~' + 7  (2/ - ,+_~ ~-'~ 

3. The electromagnetic body forces f and the curl of these forces under condition 
(2.1) are also calculated independently of the velocity field. Since | ---- (~/c)[E • 11], E : 
--(I/c)aA/Ot --- --( ho/c)f{oaA (r, @)e {~ e~, H :: rot A, the result reduces to the form 

a 7 
~r: :  --~o ~- Real [L4 o-~(rA)e~{~ -~r (rA)j, ( 3 . 1 )  

I P a 0 ]o = / 0  ~ Real [ - -  i J  --$6-(sin O �9 A) e 2iwt -t- iA* -~0--(sin 0 .  A)], J= = 0; 

rot[ : (/o/a)[~(r, O) + Q(r, 0, t)]e=, (3.2) 

(r, O) = 2r Real ~ ~ -b-g-)' ~ (r, 0, t) : --r Real 2iA oo sin0 ~7 e ~ t  ' 

where fo = o~H~a/2c z is the scale of the body force density, and the function A(r, 0) is 
given by Eq. (2.4). It is clear from (3.1) and (3.2) that the force [ has both a stationary 
component and a component which oscillates with a frequency 2~. The electromagnetic thrust 
F on the sphere in the direction opposite u 0 consists of two analogous parts. The time 
average of the magnitude of this force can be written in the form 

<F> =/oa~F~(k, 8). ( 3 . 3 )  

In calculating the dimensionless force F~(k, ~) we bear in mind the fact that F represents 
the vector sum of the forces acting on the surface currents (2.5) due to the magnetic field 
produced by currents j in the fluid. Hence it follows that 

F 1 (k, 5) = 8 ~ 5  ~ Beal t' sin 0. i .  (0) e -ik~ [hjo (i, 0) cos 0 + hi, (i, 0) sin Ol*d0, ( 3 .4 )  

hjo(r~O)-- t o [r(A~--A~)],  hlr(r ,0) - a [ s i n 0 . ( a  1 - A ~ ) ] .  r Or r sin 0a0 

On the other hand F is a vector opposite the resultant of the EBF in the whole fluid 
[therefore as the scale of the force (3.3) we take the product of the scale of fo times the 
characteristic volume], and consequently 

F 1 (k, 5) = - -  ~ (</r> cos 0 - -  </o> sin 0) 2z~r 2 sin OdOdr. 
1 0 

/ 

Calculations were performed with Eq. (3.4), and the expression in terms of the volume in- 
tegral was used to check the calculations. The results for h,(8) = sin 8 and ~ = 2 are 
listed in Table i. Using the parameter of the MHD interaction 

t io ~ ~c~ 
N- ~ p~/~ - 4c~pu~ , (3.5) 

characterizing the ratio of the work done by the body forces to the dynamic pressure, we 
write Eq. (3~ in the form 
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TABLE 1 

F j k .  2) 0 , 7 9 2  0,950 0,334 0/t96 0,t31 I 0,932 0,620 I I 0,094 

<F> = (4/~) N ~ a  2 (pu~/2) f 1 (k, 8). (3.6) 

4. The investigation of the flow pattern is reduced to the solution of the hydrody- 
namics equations 

div V = 0, rot  V ---- W, (4.1) 

O W / O t  - -  rot  [V X W] + v rot  rot  W ---- (l/p) rot f 

with body forces whose curl is given in (3.2). The presence of the oscillating term fi(r, 
e, t) in the curl of the forces leads to the superposition of a small [under condition 
(2.1)] nonstationary addition on the stationary flow pattern.* We are interested in the 
time average of the velocity and pressure distributions, which are calculated without taking 
account of the effect of Reynolds stresses resulting from the variable velocity component. 
In this case the system of equations (4.1) is equivalent to the equations 

E~t~ - -  r w  sin 0 ---- O; ( 4 . 2 )  

f o r  t h e  d i m e n s i o n l e s s  s t r e a m  f u n c t i o n  ~ ( r ,  e)  and  t h e  v o r t i c i t y  w ( r ,  e ) ,  i n t r o d u c e d  by  t h e  
r e l a t i o n s  

1 [ I ar , O* i Uo 
V == UoV , V r sin-------O - -  7 ~ er  - -  ~ e o  , W = - - a  w ( r ,  0 )  ea, 

Here Re = uo2a/o is the Reynolds number, the parameter N is defined in (3.5), and the 

operator E ~: a2 sin0 0 ( I 0) at --~ ~ r 2 00 sin~ a0 " By using the velocity field obtained, the pressure dis- 

tribution P is determined from the equation of motion 

(Vv)V = - ( l l p ) v P  + + (i/p)f.  
The result for the distribution of the dimensionless pressure p = P/(pu~/2) over the surface 
of the sphere takes the form 

0 [ 0 

Re,) Or t )f, -7-,. ( /o ( l ,O)>dO,  (4.4) 
0 Ir : : :1 19 

~o t 

Po =: t ~- ~ , ) 7 " - ~ -  dr,  
1 0 = 0  

where Po is the pressure at the front critical point r = i, 0 = 0 (the pressure at infinity 
is taken equal to zero); (I//0)<~(I , 0)> is the time average of the dimensionless e component 
of the body forces on the surface of the sphere. According to (3.1), (i/fo) <f0(r, 0)>= 

t Real [iA* ~ " " W (sin 0-A)! .  r sin 0 [ �9 j 

5. The equations derived were solved numerically by the method used in (4), in which 
a new independent variable z = in r is used instead of r. In the variables (z, e) Eqs. 
(4.2) and (4.3) take the form 

*The ratio of the scale of the oscillating component of the vorticity to the scale of its 
stationary component is determined by the ratio of two characteristic times: the period 
i/m of the oscillating part fl(r, e, t) and the residence time a/uo of a fluid particle in 
the force field. This ratio is equal to uo/am, and on the basis of (2.1) is substantially 
smaller than unity. 
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L9 -- ge ~ = O, 

where L = B2/~z2 -- ~/~z + ~2/~Oa --cot O(3/~O); q and X are auxiliary quantities related to 
the vorticity: 

q - =  w r s i n  O, Z = ( l / r s i n  0)~.  

The  d o m a i n  o f  d e f i n i t i o n  o f  t h e  r e q u i r e d  f u n c t i o n s  i s  t h e  h a l f - s t r i p  0 ~< 8 ~ ~ ,  z f>  O, 
w h i c h  i s  r e p l a c e d  by  a r e c t a n g l e  w i t h  t h e  b o u n d a r y  z = z m f o r  t h e  n u m e r i c a l  s o l u t i o n ,  A n e t  
uniform with respect to both z(Az : zm/N,) and 8(A@ = ~/N2) is used in the (z, @) plane. 
The uniform division of the interval 0 ~-~ z ~ z m corresponds to a nonuniform net in the 
physical (r, 8) plane, finest close to the surface of the sphere where the flow is charac- 
terized by maximum gradients, and coarser far from the sphere. 

At the boundaries 8 = O, 8 = ~, and z = z m the following boundary conditions were used: 

= O, w =  0 at @ = O, O = ~; 

w = O, ~ = (t/2)e~zsin20 at Z = Zm, 0 ~ O ~ ~/2; 

w := O, a~/Ox : 0 at z = Zm, ~ / 2 <  O <  ~, 

with the x axis along the axis of symmetry. The condition ~ = 0 and the boundary condition 
of [5] with the relaxation procedure of [6] for vorticity were used on the solid boundary. 

The calculations were performed for a net with N: = 70 and N2 = 50; the outer boundary 
of the region was assigned the value z m = 2, representing a spherical surface with a radius 
7.4 times as large as the radius of the solid sphere. The errors resulting from the rela- 
tive coarseness of the net and the proximity of the outer boundary were estimated from a 
comparison of the results obtained for no electromagnetic fields and Re = I00 with data of 
[7] obtained with NI = i00, N2 = 60, and z m = 2.5. The error in the magnitude of the vor- 
ticity on the surface of the sphere did not exceed 1%. The largest error occurred in the 
calculation of the pressure distribution in the separation region; the maximum relative 
error (ratio of the absolute error to the pressure at the frontal point) was 1.6% at the 
point e = ~, r = i. In view of this, the error in the pressure drag coefficient was also 
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appreciable, amounting to 1.8%. The error in the calculation of the frictional drag co- 
efficient was 0.5%, and the relative error of the total drag coefficient was 0.8%. The 
error in calculating the total drag coefficient for Re = 300 was 1.3% when the outer bound- 
ary was approximated up to z m = 1.5 with a decrease in the mesh size in z. 

6. The calculations were performed for ~ = 2 and k = 4 for the function h,(0) = 
sin 0, in which the amplitude of the traveling wave was maximum in the equatorial plane. 
The distributions of the dimensionless 0 and r components of the body forces over the sur- 
face of the sphere obtained in this way are shown in Fig. i. Here curve 1 represents 
(i/10)<~eO, 0)>, and curve 2 (~/10)<~r(i,~>. It is clear that the forces f have basically the 
direction (coinciding with %) which intuitively seems necessary to prevent flow separa- 
tion. 

Figure 2 shows the pressure distribution (solid curves) and vorticity (open curves) 
over the surface of the sphere for Re = i00 and N = 0, 2) and 4 (curves 1-3, respectively). 
Similar relations for Re = 300 are shown in Fig. 3 (curves 1-3 correspond to N = 0, i, and 
1.75). It is clear that the presence of EBF has little effect on the flow parameters near 
the frontal point of the sphere, and has the greatest effect in the wake. With an increase 
in N the separation point is shifted back and disappears, and the pressure in the wake 
increases, leading to a decrease of the pressure drag. The vorticity w on the surface of 
the sphere increases with increasing N, increasing the frictional drag. Figure 4 shows the 
dependence of the frictional cf (dashed curves) and pressure Cp (dash--dot curves) drag 
coefficients and the total drag coefficient c d = cf + Cp (solid curves) on N for all values 
of Re considered. The numbers 1-4 denote curves referring respectively to Re = 50, i00, 200, 
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and 300. It is clear that Cd increases most rapidly with increasing N for Re = 50. This 
growth slows down with increasing Re, and for Re = 300 the drag coefficient is practically 
independent of N. The similar behavior of the dependence of c d on N is accounted for by the 
decrease of the relative contribution of the frictional drag to the total drag with increas- 
ing Reynolds number. 

The value N = N, at which the sphere becomes self-propelled is determined by equating 
the thrust (3.6) to the resistance force ~ai(pu~/2)Cd(N), i.e., from the condition 

cd(N) = (4/n)F~(k, ~)N. 

The intersection of the thin straight line of Fig. 4, which is a plot of y(N) = (4/v). 
FI(4, 2)N, with the cd(N) curve determines the required values of N,. For Re = 50, 
N, ~ 6.7 and ce(N*) ~ 2.85; i.e., the drag on a self-propelled sphere is 1.78 times that 
of classical flow. For Re = i00, 200, and 300 the values under consideration are, respec- 
tively, N, ~-- 3.6, cd(N,) --~ 1.52; N, ~ 2.1, Cd(N,) = 0.9; and N, -- 1.6, cd(N,) --~ 0.68. 
Thus, even for Re = 300 the drag coefficient of a sphere set in motion by the electromag- 
netic forces under consideration is only slightly larger than the value Cd(0 ) = 0.64, 
the drag coefficient for classical flow around a sphere. This fact gives us confidence that 
for larger values of Re the drag for MHD flow around a body may be smaller than for classi- 
cal flow, as predicted by Merku!ov [8]. It should be emphasized that for this to be the 
case the electric and magnetic fields must be produced by a source near (inside) the body 
around which the flow occurs. For flow around a body in an external magnetic field the 
presence of the field always leads to an increase in both the pressure drag and the total 
hydrodynamic drag [i, 2]. 

The authors thank V. I. Merkulov and N. N. Yanenko for stimulating discussions. 
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